

OIDA Annual Membership Forum PCAD Joint Venture Team Washington, D.C. October 5, 1999

The Photonics Computer-Aided Design (PCAD) Joint Venture

Matt Goodman Telcordia Technologies

Agilent

PCAD Technical Contacts

Consortium Director -Dr. Al Mondelli (SAIC)

Consortium Technical Lead -Dr. Matt Goodman

(Telcordia Technologies)

Agilent Technologies Dr. Mitch Mlinar

Columbia University **Professor Richard Osgood**

Nortel Networks Dr. Gary Mak

RSoft Inc. Dr. Rob Scarmozzino SAIC Dr. Spilios Riyopoulos SDL Dr. Mehrdad Ziari Telcordia Technologies Dr. Janet Jackel

representing the PCAD team.

Outline

- v Motivation
- v Why NIST/ATP
- v Technical Program Goals
- v Joint Venture Team Activities and selected results
- v Demonstration
- What PCAD means for OIDA
- v Conclusions

Motivation

- Historic development of high performance microelectronics and impact of simulation
 - Single material system (Si)
 - Essentially one device type (FET)
- v Growing multi-faceted Photonics Marketplace
 - Networks, Datacom, Lighting, Healthcare, Automotive, Military, Computers
- v Optoelectronics Industry
 - Many material systems
 - Widely varying device types
 - No "standard" widely used simulation technology

Why PCAD?

v Existing OE Simulation Tools...

- · Isolated, non-interoperable tools
- · Inefficient design cycles
- Primarily foreign based tools and frameworks cause delayed impacts
- Resulting in poorer product competitiveness

v The PCAD Consortium:

• A multiyear program to build an open, integrated, hierarchical simulation environment with an initial experimentally validated tool set

v PCAD Consortium Goals:

- · Shortened photonics design cycle time
- Reduced product time-to-market
- · Improved reliability
- · Lower costs at every level

Why NIST/ATP Funding?

Tool development without NIST/ATP is transaction based

- · Product oriented pair-wise interactions only
- No sustained collaboration for integration
- No focused multi-party research effort
- No open interfaces proprietary codes, interfaces, GUI

PCAD supported in part by NIST/ATP is Collaborative

- Long term focused research with Partner co-investment
- Integrated tool and framework development
- Interactions between tool developers and manufacturers
- · Accelerated commercialization and market growth
- Prototype for future standards

PCAD Joint Venture Team

	Туре	Organization	Strengths	
	Optoelectronics Manufacturers	SDL Nortel Networks	Commercial OE hardware sales Internal R&D	
	Commercial Software Vendors	HP/EEsof Div. (Aailent Technologies) RSoft	Commercial software sales Leading edge photonic tool dev.	
	Commercial & Government Services	Telcordia Technologies SAIC	Consulting servicesSoftware licensingVendor-neutralLeading-edge R&D	
	Universities	Columbia	Contract R&D Leading edge technology expertise	

Multi-Level Photonics CAD Simulation Environment

Threads toward a tapestry

- v PCAD incorporates
 - Software developers
 - Actual manufacturers who use the codes
 - · Test and validation activity
- v Tasks
 - Requirements
 - Hierarchical Framework development
 - Tool development at different layers
 - Test and Validation activities
- è Simulation at different levels of abstraction
- è Address issues that OE manufacturers really care about

RSoft's Research

- Enhance the capabilities and extend current products covering both device and system/link
 - BeamProp
 - FullWAVE
 - LinkSIM
- Develop prototypes of new device and component level CAD tools
 - Edge-Emitting and VCSEL lasers
 - Amplifiers
 - Modulators
 - Wavelength-domain integrated circuit simulators
- v Definition of framework requirements
- v Integration of device and link-level tools
- v Integration of link and network-level tools

Agilent/HP EEsof

- Advanced Design System as a starting point framework
 - · Simulate the entire communications signal path
 - RF, μW, DSP, Photonics & System level design
 - · Layout for high frequency circuits
- v Enabling Technologies
 - 3D finite element simulator for passive 3D structures
 - Momentum for planar EM passive circuit analysis
 - IC-CAP for nonlinear active device modeling
 - Libraries of over 90,000 active and passive parts
- v Links to other cad software (Mentor, Cadence, ...)

Columbia U. Research

- Applications of photonic crystal devices to magnetic materials
- v Modeling of traveling wave LiNbO₃ modulators
- v Ongoing software prototyping and evaluation
- v Development of bidirectional beam propagation algorithms:
 - Increased speed, reduced memory for modeling of reflective photonic structures:
 - eg. T-splitter:

Nortel Networks

- Nortel will ensure that a fully-integrated PCAD simulation system provides real value in the design and manufacture of photonic components.
- v Nortel's research
 - · helping to set user requirements for PCAD tools,
 - comparing model predictions to experimental data on device, optical link, and network performance
 - Example:
 - will use a prototypical device (e.g. optical modulator), to validate the module level model (electro-optical and electrical) and compare with optical link performance measurements and actual estimates of manufacturing yield

SDL Research

- v Representation of photonic manufacturing
- Definition of software requirements from a user's perspective
- v Experimental Test and Validation Activities
- v SDL will use the tools in design, fabrication and testing and will provide feedback to tool developers
 - Model accuracy
 - Compatibility with manufacturing environment
 - ⇒ Measurable & relevant input and output parameters

SAIC Research

- v Physics-based Device Modeling
- v Framework activities
- v Example: Fast multi-mode VCSEL modeling
 - Expansion in cavity eigenmodes
 - Retains 2-D effects without finite spatial grid
 - Multimode interactions / hole burning included
 - · Runs in tens of seconds

Power output vs. time (three modes included)

Telcordia Technologies Research

- v Program Technical Lead and Co-ordination
- Development/enhancement of a wavelength domain network level simulator
- v Integration of network and link level tools (with RSoft)
- v Definition of tools requirements at multiple levels
- v Co-ordinate testing and validation activities

Demonstration

Example Simulation Library

